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The onset of convection in a bidisperse porous medium
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Abstract

The classical Rayleigh–Bénard theory, for the onset of convection in a horizontal layer uniformly heated from below, has been applied
to a bidisperse porous medium. The linear stability analysis leads to an expression for the critical Rayleigh number as a function of a
Darcy number, two volume fractions, a permeability ratio, a thermal capacity ratio, a thermal conductivity ratio, an inter-phase heat
transfer parameter and an inter-phase momentum transfer parameter.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A bidisperse porous medium (BDPM, see Fig. 1), as
informally defined by Chen et al. [1,2], is composed of clus-
ters of large particles that are agglomerations of small par-
ticles. Thus there are macro-pores between the clusters and
micro-pores within them. Applications are found in bidis-
perse adsorbent or bidisperse capillary wicks in a heat pipe.
Since the bidisperse wick structure significantly increases
the area available for liquid film evaporation, it has been
proposed for use in the evaporator of heat pipes.

A BDPM may thus be looked at as a standard porous
medium in which the solid phase is replaced by another
porous medium, whose temperature may be denoted by
Tp if local thermal equilibrium is assumed within each clus-
ter. We can then talk about the f-phase (the macro-pores)
and the p-phase (the remainder of the structure). An alter-
native way of looking at the structure is to regard it as a
porous medium in which fractures or tunnels have been
introduced. One can then think of the f-phase as being a
‘fracture phase’ and the p-phase as being a ‘porous phase’.

Extending the Brinkman model for a monodisperse por-
ous medium, Nield and Kuznetsov [3] modeled the steady-
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state momentum transfer in a BDPM by the following pair
of coupled equations for v�f and v�p, where the asterisks
denote dimensional variables

G ¼ l
K f

� �
v�f þ fðv�f � v�pÞ � ~lfr�

2

v�f ; ð1Þ

G ¼ l
Kp

� �
v�p þ fðv�p � v�f Þ � ~lpr�

2

v�p. ð2Þ

Here G is the negative of the applied pressure gradient, l is
the fluid viscosity, ~lf and ~lp are the effective viscosities in
the two phases, Kf and Kp are the permeabilities of the
two phases, and f is the coefficient for momentum transfer
between the two phases. From Eqs. (1) and (2), v�p can be
eliminated to give

~lf ~lpr�
4

v�f � ½~lfðfþ l=KpÞ þ ~lpðfþ l=K fÞ�r�
2

v�f

þ ½flð1=K f þ 1=KpÞ þ l2=ðK fKpÞ�v�f ¼ Gð2þ l=KpÞ
ð3Þ

and v�p is given by the same equation with subscripts
swapped.

These equations were applied by Nield and Kuznetsov
[4,5] to forced convection in a channel.

In this paper we apply a two-velocity two-temperature
formulation to the Horton–Rogers–Lapwood problem,
following the procedure used by Banu and Rees [6].
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Nomenclature

c specific heat at constant pressure
d layer depth
Daf Darcy number, ~lK f

ld2

G negative of the applied pressure gradient
h inter-phase heat transfer coefficient (incorporat-

ing the specific area)
H inter-phase heat transfer parameter
k thermal conductivity
K permeability
m dimensionless horizontal wavenumber of the

disturbance
Raf Rayleigh number, qFgb̂ðT l�T uÞK f d

l/kf=ðqcÞf
Ra cRaf/(c + 1)
Tl temperature at the lower boundary (y* = 0)
Tu temperature at the upper boundary (y* = d)
T0 reference temperature, Tl � Tu

v* filtration velocity

Greek symbols

a thermal diffusivity ratio, kf

kp

ðqcÞp
ðqcÞf

b modified thermal capacity ratio,
ð1�/ÞkpðqcÞf

/kf ðqcÞp

b̂ volumetric thermal expansion coefficient of the
fluid

c modified thermal conductivity ratio, /kf

ð1�/Þkp

e volume fraction of the p-phase
f coefficient for momentum transfer between the

two phases
l fluid viscosity
~l effective viscosity of the porous medium
qF density of the fluid
rf f-phase momentum transfer parameter, fK f

l
/ volume fraction of the f-phase

Subscripts

f fracture phase (macro-pores)
p porous phase (micro-pores)

Superscript

* dimensional variable

Fig. 1. Sketch of a bidisperse porous medium.
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2. Analysis

We consider a layer of a BDPM heated uniformly
from below, with applied temperatures Tl and Tu at the
lower boundary (y* = 0) and the upper boundary
(y* = d), respectively. (The asterisks denote dimensional
variables.) The equations of continuity (expressing conser-
vation of mass) for the velocity components in the two
phases are
ou�f
ox�
þ ov�f

oy�
¼ 0; ð4Þ

ou�p
ox�
þ

ov�p
oy�
¼ 0. ð5Þ

We note that in the traditional Darcy formulation the pres-
sure is an intrinsic quantity, i.e., it is the pressure in the
fluid. We recognize that in a BDPM the fluid occupies all
of the f-phase and a fraction of the p-phase. We denote
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the volume fraction of the f-phase by / (something that in
a regular porous medium would be called the porosity) and
the porosity in the p-phase by e. Thus 1 � / is the volume
fraction of the p-phase, and the volume fraction of the
BDPM occupied by the fluid is / + (1 � /)e. The volume
average of the temperature over the fluid is

T �F ¼
/T �f þ ð1� /ÞeT �p

/þ ð1� /Þe . ð6Þ

The drag force (per unit volume) balances the gradient of
the excess pressure over hydrostatic. Our basic hypothesis
is that in a BDPM the drag is increased by an amount
fðv�f � v�pÞ for the f-phase and decreased by the same
amount for the p-phase. Accordingly, we write the momen-
tum equations as

op�

ox�
¼ � l

K f

u�f � fðu�f � u�pÞ þ ~lr2u�f ; ð7Þ

op�

ox�
¼ � l

Kp

u�p � fðu�p � u�f Þ þ ~lr2u�p; ð8Þ

op�

oy�
¼ � l

K f

v�f � fðv�f � v�pÞ þ ~lr2v�f

þ qFgb̂ðT �F � T 0Þ; ð9Þ
op�

oy�
¼ � l

Kp

v�p � fðv�p � v�f Þ þ ~lr2v�p

þ qFgb̂ðT �F � T 0Þ. ð10Þ
We have simplified the equations by assuming that ~lf and
~lp are equal, so the subscripts on ~l can be dropped. Here
qF is the density of the fluid, b̂ is the volumetric thermal
expansion coefficient of the fluid, and T0 is a reference
temperature.

The thermal energy equations are taken as

/ðqcÞf
oT �f
ot�
þ /ðqcÞfv�f � rT �f ¼ /kfr2T �f þ hðT �p � T �f Þ;

ð11Þ

ð1� /ÞðqcÞp
oT �p
ot�
þ ð1� /ÞðqcÞpv�p � rT �p

¼ ð1� /Þkpr2T �p þ hðT �f � T �pÞ. ð12Þ

Here c denotes the specific heat at constant pressure, k de-
notes the thermal conductivity, and h is an inter-phase heat
transfer coefficient (incorporating the specific area).

We introduce dimensionless variables as follows:

ðx�; y�Þ ¼ dðx; yÞ; t� ¼ ðqcÞf
kf

d2t; p� ¼ kfl
ðqcÞf K f

p; ð13Þ

ðu�f ; v�f Þ ¼
/kf

ðqcÞfd
ðuf ; vfÞ; ðu�p; v�pÞ ¼

ð1� /Þkp

ðqcÞpd
ðup; vpÞ;

ð14Þ
T �f ¼ ðT l � T uÞhf þ T u; T �p ¼ ðT l � T uÞhp þ T u. ð15Þ

We take the reference temperature T0 as Tl � Tu. We also
introduce the stream functions wf and wp defined so that

uf ¼ �
owf

oy
; vf ¼

owf

ox
; up ¼ �

owp

oy
; vp ¼

owp

ox
. ð16Þ
We define a Rayleigh number Raf and a Darcy number Daf

based on properties in the f-phase by

Raf ¼
qFgb̂ðT l � T uÞK f d

l/kf=ðqcÞf
; Daf ¼

~lK f

ld2
. ð17a; bÞ

Elimination of the pressure from Eqs. (7)–(10) gives

ð1þ rfÞr2 � Dafr4
� �

wf � brfr2wp ¼ Raf

ohF

ox
; ð18Þ

� rfr2wf þ b
1

Kr

þ rf

� �
r2 � Dafr4

� �
wp ¼ Raf

ohF

ox
;

ð19Þ
where

ohF

ox
¼

/ ohf

ox þ ð1� /Þe ohp

ox

/þ ð1� /Þe . ð20Þ

Here we have introduced the dimensionless parameters

rf ¼
fK f

l
; b ¼ ð1� /ÞkpðqcÞf

/kfðqcÞp
. ð21Þ

Thus rf is an inter-phase momentum transfer parameter,
while b is a modified thermal diffusivity ratio.

Also, the thermal energy Eqs. (11) and (12) become

ohf

ot
� owf

oy
ohf

ox
þ owf

ox
ohf

oy
¼ r2hf þ Hðhp � hfÞ; ð22Þ

a
ohp

ot
�

owp

oy
ohp

ox
þ

owp

ox
ohp

oy
¼ r2hp þ cHðhf � hpÞ; ð23Þ

where

a ¼ kf

kp

ðqcÞp
ðqcÞf

; c ¼ /kf

ð1� /Þkp

; H ¼ hd2

/kf

. ð24Þ

Thus a is a thermal diffusivity ratio, c is a modified thermal
conductivity ratio, and H is an inter-phase heat transfer
parameter.

The conducting state solution is

wf ¼ wp ¼ 0; hf ¼ hp ¼ 1� y. ð25Þ

We now perturb this solution and write

wf ¼ Wf ; wp ¼ Wp; hf ¼ 1� y þHf ;

hp ¼ 1� y þHp. ð26Þ

We also invoke the principle of exchange of stabilities. This
has the affect that the inertial coefficient a drops out of the
subsequent equations. Substitution in Eqs. (18)–(23) and
linearization gives

½ð1þ rfÞr2 � Dafr4�Wf � brfr2Wp

¼ Raf

/ oHf

ox þ ð1� /Þe oHp

ox

/þ ð1� /Þe

" #
; ð27Þ

� rfr2Wf þ b
1

Kr

þ rf

� �
r2 � Dafr4

� �
Wp

¼ Raf

/ oHf

ox þ ð1� /Þe oHp

ox

/þ ð1� /Þe

" #
; ð28Þ
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oHf

ot
¼ r2Hf þ

oWf

ox
þ HðHp �HfÞ; ð29Þ

a
oHp

ot
¼ r2Hp þ

oWp

ox
þ cHðHf �HpÞ. ð30Þ

For perfectly conducting and stress-free boundaries the
boundary conditions are

Wf ¼ Wp ¼
o2Wf

oy2
¼ o2Wp

oy2
¼ Hf ¼ Hp ¼ 0 at y ¼ 0

and at y ¼ 1. ð31Þ

The solution of the system of Eqs. (27)–(31) is

Wf ¼ A1 sin py cos mx; Wp ¼ A2 sin py cos mx;

Hf ¼ A3 sin py sin mx; Hp ¼ A4 sin py sin mx;

ð32a; b; c; dÞ

where A1, . . . ,A4 are constants and m denotes the horizon-
tal wavenumber of the disturbance.

Substitution of Eq. (32) into Eqs. (27)–(30), and elimina-
tion of A1, . . . ,A4, yields the eigenvalue equation

ð1þrfÞMþDaf M2 �brf M
m/Raf

/þð1�/Þe
mð1�/ÞeRaf

/þð1�/Þe

�rf M b 1
Kr
þrf

� 	
MþDaf M2

h i
m/Raf

/þð1�/Þe
mð1�/ÞeRaf

/þð1�/Þe

m 0 MþH �H

0 m �cH Mþ cH


























¼ 0

ð33Þ
Here M is shorthand for p2 + m2.

Expanding and solving for Raf gives
Raf ¼
b½/þ ð1� /Þe�M2ðM þ H þ cHÞ 1

Kr
þ 1

Kr
þ 1

� 	
rf þ DafM 1

Kr
þ 1þ 2rf

h i
þ Da2

f M2
n o

m2 ½1þ 2rf þ DafM �½/H þ ð1� /ÞeðM þ HÞ� þ b 1
Kr
þ 2rf þ DafM

h i
½/ðM þ cHÞ þ ð1� /ÞecH �

n o . ð34Þ

Raf ¼
28b½/þð1�/Þe�M1ðM1þH þ cHÞ 1

Kr
þ 1

Kr
þ1

� 	
rf

h i
M2

2þDaf
1

Kr
þ1þ2rf

h i
M2M3þDa2

f M2
3

n o
27m2 ½ð1þ2rfÞM2þDafM3�½/H þð1�/ÞeðM1þHÞ�þb 1

Kr
þ2rf

� 	
M2þDafM3

h i
/ðM1þ cHÞþð1�/ÞecH½ �

n o . ð39Þ
The formula for the case of a regular porous medium is
recovered as Kr, rf and e tend to zero. The result is

Raf ¼
M2ðM þ H þ cHÞð1þ DafMÞ

m2ðM þ cHÞ . ð34aÞ

This result is in agreement with Eq. (27) of Postelnicu and
Rees [7].

It is interesting that for the case Kr = 1 a factor
1 + 2rf + Daf M cancels and Eq. (34) reduces to

Raf ¼
bM2ðMþH þ cHÞð1þDaf MÞ

m2 /H þð1�/ÞeðMþHÞþb /ðMþ cHÞþðð1�/ÞecHÞ½ �f g ;

ð34bÞ
something which is independent of rf.
The minimum value of this expression, as the horizontal
wavenumber m is varied, is the critical Rayleigh number
(based on properties of the f-phase).

For perfectly conducting and rigid boundaries the
boundary conditions are now

Wf ¼ Wp ¼
oWf

oy
¼ oWp

oy
¼ Hf ¼ Hp ¼ 0 at y ¼ 0

and at y ¼ 1. ð35Þ

A single-term Galerkin expansion gives the following
approximate solution.

The solution of the system of Eqs. (27)–(31) is now

Wf ¼ A1T 1ðyÞ cos mx; Wp ¼ A2T 2ðyÞ cos mx;

Hf ¼ A3T 3ðyÞ sin mx; Hp ¼ A4T 4ðyÞ sin mx.

ð36a; b; c; dÞ
An appropriate choice of the trial functions (so that the
boundary conditions (35) are satisfied) is

T 1ðyÞ ¼ T 2ðyÞ ¼ y2ð1� yÞ2; T 3ðyÞ ¼ T 4ðyÞ ¼ yð1� yÞ.
ð37Þ

The standard procedure then leads to the eigenvalue
equation

ð1þrfÞM2þDaf M3 �brf M2
9m/Raf

2½/þð1�/Þe�
9mð1�/ÞeRaf

2½/þð1�/Þe�

�rf M2 b 1
Kr
þrf

� 	
M2þDaf M3

h i
9m/Raf

2½/þð1�/Þe�
9mð1�/ÞeRaf

2½/þð1�/Þe�
3

14
m 0 M1þH �H

0 3
14

m �cH M1þcH


























¼ 0;

ð38Þ
where M1 = 10 + m2, M2 = 12 + m2, M3 = 504 + 24m2 + m4.
In turn, this leads to
The corresponding result for a regular porous medium
is

Raf ¼
28M1ðM1 þ H þ cHÞðM2 þ Daf M3Þ

27m2ðM1 þ cHÞ . ð39aÞ

The special result for the case Kr = 1 is

Raf ¼
28b½/þð1�/Þe�M1ðM1þH þcHÞðM2þDaf M3Þ

27m2f/H þð1�/ÞeðM1þHÞþb½/ðM1þcHÞþðð1�/ÞecHÞ�g ;

ð39bÞ

For the classical Rayleigh–Bénard problem, the single-term
Galerkin approximation gives a value 1750 for the critical
Rayleigh number, compared with the exact value 1708,
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i.e., a value about 3% too large, well within the experimen-
tal error in a typical experiment.

The Rayleigh number based on effective properties of
the porous medium, Ra, is related to Raf by

Ra ¼ c
cþ 1

Raf . ð40Þ

Postelnicu and Rees [7] presented critical values of Raf but
we have chosen to present critical values of Ra. We believe
that this readily ensures a more meaningful comparison
with results for the LTE limit (H tends to infinity).

3. Results and discussion

Since we have explicit analytical expressions available,
our code for numerical results is simple, and we have
checked our results against the precise values obtained by
Postelnicu and Rees [7] for the regular medium case.
Clearly we have a large number of parameters to investi-
gate. We are guided by the fact that Postelnicu and Rees
[7] investigated the variation of H (an internal heat
exchange parameter) and c (a modified thermal conductiv-
ity ratio). We have Raf as a function of m, Daf, /, e, b, Kr,
rf, c, and H. Compared with the case of a regular porous
medium investigated by Postelnicu and Rees [7] we have
four new parameters, namely e, b, Kr, and rf. We refer to
these as the BDPM parameters, and it is the effect of these
parameters that is our principal focus in this paper. Our
results (unlike those for the regular medium) also depend
on the value of /. In this study we report results for the
representative values / = 0.4 and e = 0.4.

As a first step, we explored the space Kr = [0.0001, 0.01,
1], rf = [0.001,1,1000], b = [0.1,1,10], and Daf = [0.001, 1].
For this space we found that the critical wavenumber mc

did not vary much from the value 3. Accordingly we have
0

20

40

60

80

100

120

140

-2 -1 0 1 2 3 4 5
log10 H(    )

 γ = 0.1

 γ = 1

 γ = 10

R
a

Fig. 2. Plots of the critical value of the Rayleigh number Ra = cRaf/
(c + 1) versus inter-phase heat transfer parameter H for various values of
the modified thermal conductivity ratio c. For each of Figs. 2–5 the
parameter values are b = 10, Kr = 0.0001, / = 0.4, e = 0.4. For this figure,
Daf = 0.001, rf = 1.

Fig. 4. Same as Fig. 2, but now Daf = 1 instead of 0.001.
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Fig. 5. Same as for Fig. 4, but now rf = 1000 instead of 1.
reported values for the critical Rayleigh number only, and
following Postelnicu and Rees [7] we have plotted this for
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various values of c and H. We also found that the general
picture for the stress-free case was similar to that for the
rigid body case, so we have reported numerical results for
the latter case only. Also for this parameter range (54 sets
of parameter values) we found the following. As we have
already observed, when Kr = 1 the effect of a change in rf

is zero. For smaller values of Kr, the effect of a change in
rf from 0.001 to 1 is generally small, but the effect of a
change from 1 to 1000 is significant, especially for very
small Kr, and this effect becomes accentuated as b
increases. We also observed that the interaction of the
BDPM parameters and Daf was not large.

With the above results of our preliminary investigation
in mind, we have then concentrated on the case b = 10
and Kr = 0.0001, and effect of a change in rf from 1 to
1000, for each of a typical small Darcy number case
(Daf = 0.001) and a large Darcy number case (Daf = 1).
The results are displayed in Figs. 2–5. These plots show a
substantial change in the critical value of Ra (as defined in
Eq. (40)) from figure to figure, but the pattern of change
with c and H is much the same in each figure. These figures
can be compared with Figs. 6 and 7, which correspond to
the limiting case of a regular medium (very small values
of Kr, e, and rf). Comparing Fig. 2 with Fig. 6, and Fig. 4
with Fig. 7, we see that the main qualitative difference is
the trend as H decreases (i.e., as one moves from LTE to
LTNE) for the case of large c. For the BDPM the critical
Rayleigh number increases as H decreases, but for the reg-
ular porous medium the change is in the opposite direction.

We conclude this section with a general remark.
We have introduced an inter-phase momentum transfer
parameter rf on analogy with an inter-phase heat transfer
parameter H. However, the analogy is not complete. The
regular thermal situation (local thermal equilibrium) corre-
sponds to the large H limit, but the regular hydrodynamic
situation (a regular porous medium) corresponds to the
small rf limit. In this pioneering study we have pushed
the boundaries by reporting results for large values (as well
as moderate values) of rf, but we recognize that these large
values are probably not physically realistic. It appears that
experimental results are currently lacking.
4. Conclusions

We have extended the classical Rayleigh–Bénard theory,
for the onset of convection in a horizontal layer uniformly
heated from below, for a regular porous medium (the Hor-
ton–Rogers–Lapwood problem), to the case of a bidisperse
porous medium, using an extended Brinkman model. The
extension involves the introduction of four additional
dimensionless parameters, and we have investigated the
effect of these. Two of the new parameters (an additional
volume fraction and a permeability ratio) are essentially
geometrical. The other two (a modified thermal capacity
ratio and an inter-phase momentum transfer parameter)
are of special interest.
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